Logaritma, Operasi Hitung Logaritma dan Persamaan Logaritma

Maret 25, 2015 Add Comment
Logaritma, Operasi Hitung Logaritma dan Persamaan Logaritma


Konsep Logaritma
Logaritma merupakan bentuk kebalikan dari pangkat. Jika 32 = 9 maka 3log 9 = 2. Jika bentuk 25 = 32 maka 2log 32 = 5. Dari contoh diatas kitadapat mengetahui hal-hal berikut.
Jika 3n = 9 maka nilai n = 2 dan Jika 2m = 32 maka nilai m = 5.
Nah, bagaimana jika terdapat bentuk seperti ini.
Jika 5m = 12, tentukan nilai m
Jika 3n = 10, tentukan nilai n.

Ternyata tidak ada bilangan bulat pengganti m dan n pada permasalahan di atas bukan?
Untuk menyelesaikannya, maka digunakan konsep logaritma.
Dari kedua soal di atas, maka diperoleh nilai m dan n sebagai berikut.
Jika 5m = 12, maka nilai m = 5log 12
Jika 3n = 10, maka nilai n = 3log 10

Dengan permasalahan inilah maka muncul materi tentang logaritma.

  ac = b maka  alog b = c

Bentuk umum logarima  adalah adengan alog b disebut dengan basis (a > 0 dan b tidak sama dengan 0), dengan a disebut bilangan pokok, b disebut dengan numerus, dan c disebut dengan hasil logaritma. Khusus untuk logaritma dengan basis 10, basisnya tidak dituliskan, cukup dengan menggunakan log.
Contoh:
10log 25 cukup ditulis log 25
10log 120 cukup ditulis log 120

Sifat-Sifat Logaritma
     Jika n adalah logaritma dari a dengan bilangan pokok p, berlaku:
plog a = n maka pn = a
dengan a > 0, p > 0, dan p ¹ 1
Sifat-sifat logaritma
1.  alogb = log b / log a
2.  aloga = 1
3.  ploga · alogq = plogq
5.  plog (ab) = plog a + plog b        
6.  plog (a/b) = plog a – plog b
7.  alog an = n                       
8.  ploga1 = 0
9.  plog an = n · plog a
10.  pnlog am = m/n · plog a
11. ploga = pnlog  an
12.  p plog a = a          

Selanjutnya mari melakukan operasi hitung tantang logaritma berikut ini.

Contoh 1
Tentukan hasil dari:
a.  2log 16
b.  3log 81
c.   5log 625
d.  2log 0,125
e.  5log 0,0016

Jawaban:

a.  2log 16 = 2log 24 = 4 2log 2 = 4
b.  3log 81 = 3log 34 = 4 3log 3 = 4
c.   5log 625 = 5log 53 = 3 5log 5 = 3
d.  2log 0,125 = 2log (1/8) =  2log 2-3 = -3 2log 2 = -3
e.  5log 0,0016 = 5log (1/625) = 5log 54 = 4 5log 5 = 4


Contoh 2
Tentukan hasil dari:
a.  2log 20 – 2log 5
b.  3log 12 + 3log 45 – 3log 20    
c.   5log 30 + 5log 75 –  5log 18  
d.  2log 3 . 3log 60 + 2log 24 – 2log 15 
e.  5log 75 + 5log 4. 4log 20 – 5log 12 

Jawaban:

a.  2log 20 – 2log 5 = 2log (20/5)
                   = 2log 4 = 2log 22 = 2 . 2log 2 = 2
b.  3log 12 + 3log 45 – 3log 20 = 3log (12 x 45 / 20)
                                    = 3log 27 = 3log 33= 3 3log 3 = 3
c.   5log 30 + 5log 75 –  5log 18 = 5log (30 x 75 / 18)
                                     = 5log 125 = 5log 53 = 3 5log 5 = 3    
d.  2log 3 . 3log 60 + 2log 24 – 2log 15 
    = 2log 60 + 2log 24 – 2log 45
    = 2log (60 x 24 / 45)
    = 2log 32 = 2log 25 = 5 2log 2 = 5
e.  5log 75 + 5log 4. 4log 20 – 5log 12
   = 5log 75 + 5log 20 – 5log 12
   = 5log (75 x 20 / 12)
   = 5log 125
   = 5log 53 = 3 5log 5 = 3

Contoh 3
Diketahui 2log 3 = a, 2log 5 = b, 2log 7 = c. Tentukan hasil dari:
a.  2log 30
b.  2log 70
c.   3log 18
d.  3log 120
e.  5log 180


Jawaban:
Dari keterangan di atas diperoleh nilai yang lain sebagai berikut.
2log 3 = a, maka 3log 2 = 1/a
2log 5 = b, maka 5log 2 = 1/b
2log 7 = c, maka 7log 2 = 1/c
3log 5 = b/a
5log 7 = c/b
3log 7 = c/a

a.  2log 30 = 2log (2 x 3 x 5)
                 = 2log 2 + 2log 3 + 2log 5
                 = 1 + a + b
b.  2log 70 = 2log (2 x 5 x 7)
                  = 2log 2 + 2log 5 + 2log 7
                  = 1 + b + c
c.   3log 18 = 3log (2 x 3 x 3)
                  = 3log 2 + 3log 3 + 3log 3
                 = 1/a  + 1 + 1
                 = 2 + 1/a
d.  3log 120 = 3log (23 x 3 x 5)
                  = 3log 23+ 3log 3 + 3log 5
                  = 3 3log 2 + 1 + (2log 5 / 2log 3)
                  = 3 1/a + 1 + b/a
                  = 3/a + 1 + b/a
                  = 1/a (3 + a + b)

e.  5log 180 = 5log ( 22 x 32 x 5)
                    = 5log 22 + 5log 32 + 5log 5
                   = 2 5log 2 + 2 5log 3 + 5log 5
                   = 2 . 1/b + 2 . a/b + 1
                   = 2/b + 2a/b + 1



Persamaan Logaritma
Jika kita mempunyai fungsi f(x) sedemikian hingga dalam logaritma mempunyai numerus suatu fungsi f(x) maka persamaan logaritma dapat dituliskan sebagai berikut.
  alog f(x) = c
dengan a > 0 dan f(x) > 0

Beberapa sifat logaritma yang digunakanuntuk menyelesaikan persamaan logaritma.
1.    Jika alog f(x) = alog c, maka f(x) = c
2.    Jika alog f(x) = alog g(x), maka f(x) = g(x), dengan f(x)>0 dan g(x)>0

Perhatikan contoh-contoh berikut.

Contoh 4
Tentukan penyelesaian dari persamaan logaritma berikut.
a.  2log (2x + 3) = 2log 9
b.  3log (x2 + 3x - 2) = 3log 8
c.   2log (5x - 2) = 4
d.  3log (x2 + x - 3) = 2

Jawaban:
a.  2log (2x + 3) = 2log 9
              2x + 3 = 9
                    2x = 9 – 3
                   2x = 6
                    x = 3

b.  3log (x2 + 3x – 2) = 3log 8
               x2 + 3x – 2 = 8
            x2 + 3x – 10 = 0
          (x – 2)(x + 5) = 0
            x = 2 atau x = -5

c.   2log (5x – 2) = 4
2log (5x – 4) = 2log 42
2log (5x – 4) = 2log 16
         5x – 4 = 16
               5x = 16 + 4
               5x = 20
                 x = 20/5 = 4

d.  3log (x2 + x – 3) = 2
    3log (x2 + x – 3) = 3log 32 
    3log (x2 + x – 3) = 3log 9
               x2 + x – 3 = 9
            x2+ x – 12 = 0
         (x + 4)(x – 3) = 0
       x = –4 atau x = 3


Contoh 5
Tentukan penyelesaian dari persamaan logaritma berikut.
a.  2log (2x + 3) = 2log (x + 5)
b.  3log (x2 – 3x - 2) = 3log (2x – 4)
c.   5log (2x2 + 6x - 5) = 5log (x2 + x + 1)

Jawaban:

a.  2log (2x + 3) = 2log (x + 5)
   2x + 3 = x + 5
   2x – x = 5 – 3
         x  = 2
Dicek terlebih dahulu untuk nilai x = 2 pada kedua fungsi.
f(x) = 2x + 3, maka f(2) = 2(2) + 3 = 7 > 0 (terpenuhi)
g(x) = x + 5, maka g(2) = 2 + 5 = 7 > 0 (terpenuhi)
Jadi, penyelesaiannya adalah x = 2

b.  3log (x2 – 3x + 2) = 3log (2x + 8)
             x2 – 3x + 2 = 2x + 8
             x2 – 5x – 6 = 0
         (x + 1)(x – 6) = 0
         x = -1 atau x = 6
Dicek terlebih dahulu untuk nilai x = -1 dan x = 6 pada kedua fungsi.
Untuk x = -1
f(x) = x2 – 3x + 2, maka f(-1) = (-1)2 – 3(-1) + 2 = 6 > 0 (terpenuhi)
g(x) = 2x + 8, maka g(-1) = 2(-1) + 8 = 6 > 0 (terpenuhi)
Untuk x = 6
f(x) = x2 – 3x + 2, maka f(6) = (6)2 – 3(6) + 2 = 20 > 0 (terpenuhi)
g(x) = 2x + 8, maka g(6) = 2(6) + 8 = 20 > 0 (terpenuhi)
Jadi, penyelesaiannya adalah x = -1 atau x = 6.



c.   5log (2x2 + 6x - 5) = 5log (x2 + x + 1)
              2x2 + 6x - 5 = x2+ x + 1
               x2 + 5x - 6 = 0
           (x + 6)(x - 1) = 0
           x = -6 atau x = 1
Dicek terlebih dahulu untuk nilai x = -6 atau x = 1 pada kedua fungsi.
Untuk x = -6
f(x) = 2x2 + 6x - 5, maka f(-6) = 2(-6)2+ 6(-6) – 5 = 31 > 0 (terpenuhi)
g(x) = x2 + x + 1, maka g(-6) = (-6)2 + (-6) + 1 = 31 > 0 (terpenuhi)
Untuk x = 1
f(x) = 2x2 + 6x - 5, maka f(1) = 2(1)2 + 6(1) – 5 = 3 > 0 (terpenuhi)
g(x) = x2 + x + 1, maka g(1) = 12 + 1 + 1 = 3 > 0 (terpenuhi)

Jadi, penyelesaiannya adalah x = -6 atau x = 1.

Demikianlah sedikit penjelasan tentang logaritma dan penyelesaian persamaan logaritma.
Semoga bermanfaat.

Pengertian Program Linear dan Model Matematika SMA Kelas 11

Maret 25, 2015 Add Comment
Pengertian Program Linear dan Model Matematika SMA Kelas 11
Pengertian Program Linear dan Model Matematika - Untuk postingan kali ini, materi yang akan dibahas oleh Rumus Matematika Dasar adalah mengenai Program Linear dan Model Matematika. Program linear atau biasa disenut juga sebagai optimasi linear merupakan suatu program yang bisa dipakai untuk memecahkan masalah mengenai optimasi. Di dalam masalah optimasi linear, batasan-batasan atau kendala-kendalanya bisa kita terjemahkan ke dalam bentuk sistem pertidaksamaan linear. Nilai-nilai peubah yang memenuhi suatu system pertidaksamaan linear berada pada suatu himpunan penyelesaian yang mempunyai beragam kemungkinan penyelesaian. Dari beragami kemungkinan penyelesaian tersebut terdapat sebuah penyelesaian yang memberikan hasil paling baik (penyelesaian optimum). Jadi dapat disimpulkan bahwa tujuan dari masalah optimasi linear adalah untuk mengoptimumkan (memaksimalkan atau meminimumkan) sebuah fungsi f. Fungsi f ini disebut dengan fungsi sasaran, fungsi tujuan, atau fungsi objektif.

Pengertian Program Linear dan Model Matematika

Masalah optimasi linear seperti yang telah dijelaskan di atas banyak dijumpai dalam bidang produksi barang, distribusi barang, dalam bidang ekonomi, dan bidang-bidang lainnya yang termasuk ke dalam kajian riset operasional.

Pengertian Model Matematika

Sudah dijelaskan di atas bahwa dalam memecahkan masalah program linear kita harus bisa menerjemahkan terlebih dahulu mengenai kendala-kendala yang terdapat di dalam masalah program linear ke dalam bentuk perumusan matematika. Proses tersebut adalah yang dinamakan dengan model matematika. Model matematika dapat didefinisikan sebagai suatu rumusan matematika yang diperoleh dari hasil penafsiran seseorang ketika menerjemahkan suatu masalah program linear ke dalam Bahasa matematika. Suatu model matematika dikatakan baik apabila di dalam model tersebut hanya memuat bagian-bagian yang diperlukan saja.

Untuk memahaminya dengan lebih mudah, perhatikan beberapa contoh pembuatan model matematika di bawah ini:

Contoh Soal Model Matematika dan Pembahasannya


Contoh 1 :
Mas Bejo membeli 6 buku tulis dan 8 pensil di suatu toko buku. Untuk itu Mas Bejo harus membayar Rp.6.900. Sedangkan Bang Jarwo hanya membeli 1 buah buku tulis dan 1 buah pensil dengan harga Rp.1.050. apabila harga dari sebuah buku rupiah dan sebuah pensil dinyatakan dengan x dan y, buatlah model matematika dari permasalahan tersebut!

Jawab:
Berdasarkan jumlah uang yang dibayar oleh Mas Bejo, didapat hubungan:

6x + 8y = 6.900

Berdasarkan jumlah uang yang dibayar oleh Bang Jarwo, didapat hubungan:

x+ y = 1.050

Maka model matematikanya adalah:

 6x + 8y = 6.900 dan
   x +   y = 1.050 dengan x dan y ε C


Contoh 2:
Seorang siswa memilih jurusan IPA, jika memenuhi syarat-syarat sebagai berikut:

a.) Jumlah nilai Matematika dan Fisika tidak boleh kurang dari 12
b.) Nilai masing-masing pada pelajaran tersebut tidak boleh kurang dari 5

Buatlah model matematika yang bisa digunakan sebagai patokan agar seorang siswa bisa memilih jurusan IPA!

Jawab:
Kita misalkan nilai matematika = x dan nilai fisika = y , maka dari syarat a.) diperoleh hubungan:

x + y ≥ 12

Dan dari syarat b.) diperoleh hubungan:

x ≥ 5 dan y ≥ 5

maka, model matematika yang dapat digunakan untuk patokan agar seorang siswa bisa memilih jurusan IPA adalah:

x ≥ 5 dan y ≥ 5, dan  x + y ≥ 12 ε C



Contoh 3:
Sebuah lahan parker hanya dapat menampung 200 mobil sedan. Apabila tempat tersebut digunakan untuk memarkir Bis, maka 1 Bis akan menempati luas yang sama dengan 5 buah mobil sedan. Apabila di lahan tersebut diparkir x Bis dan y Sedan, tentukanlah model matematikanya!

Jawab:
Misalkan untuk memarkir sebuah mobil sedan diperlukan luas rata-rata L m2, maka luas lahan parker yang tersedia adalah 200L m2(L > 0).

Untuk memarkir sebuah Bis diperlukan lahan seluas 5L m2 , Sehingga untuk memarkir x Bis dan y Sedan diperoleh hubungan:

(5L)x + (L)y ≤ 200
5x + y ≤ 200

Karena banyajnya mobil Bis dan Sedan tidak mungkin negatif, sehingga:

x ≥ 0 dan y ≥ 0

sehingga model matematika untuk persoalan di atas adalah:

x ≥ 0 , y ≥ 0 dan 5x + y ≤ 200, dengan x dan y

Demikianlah pembahasan materi Pengertian Program Linear dan Model Matematika serta beberapa contoh soal serta pembahasannya. Semoga kalian semua bisa memahami dan mengerti materi ini dengan baik. Untuk materi selanjutnya akan dibahas mengenai Contoh Soal dan Penyelesaian Model Matematika dari Suatu Program Linear.