Tampilkan postingan dengan label RUMUS MATEMATIKA SMA. Tampilkan semua postingan
Tampilkan postingan dengan label RUMUS MATEMATIKA SMA. Tampilkan semua postingan

Cara Mudah Menghitung Luas Permukaan Bidang Empat Beraturan

Juni 02, 2016 Add Comment
Cara Mudah Menghitung Luas Permukaan Bidang Empat Beraturan


Cara Mudah Menghitung Luas Permukaan Bidang Empat Beraturan - Apakah yang disebut sebagai bidang empat beraturan? bidang empat beraturan merupakan bangun ruang yang terdiri atas empat bidang sisi yang bentuknya berupa segitiga sama sisi. Bidang empat beraturan lebih umum dikenal sebagai limas segitiga beraturan karena keseluruhan sisinya berbentuk segitiga sama sisi. Lalu bagaimanakah cara menghitung luas permukaan bidang dari limas segitiga ini? simak pembahasan Rumus Matematika Dasar di bawah ini:
Cara Mudah Menghitung Luas Permukaan Bidang Empat Beraturan

Cara Cepat Mencari Luas Permukaan Bidang Empat Beraturan

Pertama-tama kalian harus memperhatikan gambar limas segitiga sama sisi (bidang empat beraturan) T.ABC berikut ini:

Bila diperhatikan, pada bangun ruang di atas terdapat empat buah segitiga sama sisi yang luasnya tentu saja sama. Segitiga sama sisi itu adalah ΔABC, ΔBCT, ΔACT, dan ΔABT. Rumus mudah dan cepat untuk menghitung lkuas segitiga sama sisi tersebut adalah:

 L.Δ = ¼s2√3

Ada empat permukaan bidang empat (limas segitiga sama sisi) dengan luas yang sama pada gambar di atas, maka:
L = 4 × L.Δ
L = 4 × ¼s2√3
L = s2√3

Jadi, rumus untuk mencari volume (V) bidang empat beraturan yang memiliki panjang rusuk (s) adalah:

L = s2√3

Contoh Soal 1:

Diketahui sebuah bidang empat beraturan mempunyai panjang rusuk 8 cm. Berapakah  luas permukaan bidang empat beraturan tersebut?

Penyelesaiannya:
L = s2√3
V = (8 cm)2√3
V = 64√3 cm2

Jadi, luas permukaan bidang empat beraturan tersebut adalah 64√3 cm2

Itulah Cara Mudah Menghitung Luas Permukaan Bidang Empat Beraturan (limas segitiga sama sisi) apabila panjang rusuknya telkah diketahui. Semoga saja kalian bisa memahami penjelasan di atas dengan baik.

Contoh Soal dan Pembahasan Cara Menghitung Jarak Titik ke Garis Pada Kubus

Juni 02, 2016 Add Comment
 Contoh Soal dan Pembahasan Cara Menghitung Jarak Titik ke Garis Pada Kubus
Apakah kalian sudah membaca postingan Rumus Matematika Dasar mengenai Cara Menghitung Jarak Titik ke Titik, Garis, dan Bidang ? jika belum, sebaiknya membacanya terlebih dahulu agar kalian bisa lebih mudah memahami Contoh Soal dan Pembahasan Cara Menghitung Jarak Titik ke Garis Pada Kubus yang akan dijelaskan di bawah ini:

Contoh Soal dan Pembahasan Cara Menghitung Jarak Titik ke Garis Pada Kubus

Contoh Soal 1

Diketahui panjang rusuk sebuah kubus ABCD.EFGH adalah 6cm. Maka hitunglah jarak:

a).titik D ke garis BF
b).titik B ke garis EG

Penyelesaiannya:

a).Agar lebih mudah dalam menjawabnya, mari kita perhatikan gambar di bawah ini:
 Contoh Soal dan Pembahasan Cara Menghitung Jarak Titik ke Garis Pada Kubus
Dari gambar di atas kita bisa melihat bahwa jarak titik D ke garis BF adalah panjang diagonal BD yang dapat ditentukan dengan menggunakan teorema phytagoras ataupun dengan rumus. Mari kita selesaikan dengan teorema phytagoras terlebih dahulu:

BD2 = AB2 + AD2
BD2 = 62 + 62
BD2 = 72
BD = √72 = 6√2 cm

beikut bila kita mencarinya dengan menggunakan rumus:

d = s√2
BD = AB√2
BD = (6 cm)√2
BD = 6√2 cm

Maka, jarak titik D ke garis BF adalah 6√2 cm



b). Sama halnya dengan soal a) kita juga harus membuat gambarnya terlebih dahulu agar lebih mudah mengerjakannya.
 Contoh Soal dan Pembahasan Cara Menghitung Jarak Titik ke Garis Pada Kubus
Dari perhitungan pada soal a) diketahui bahwa panjang diagonal sisi kubus FH = BD adalah 6√2 cm

Untuk mengetahui panjang BP, kita gunakan teorema phytagoras untuk segitiga siku-siku BFP:

FP = ½ FH = 3√2 cm

maka:

BP2 = FP2 + BF2
BP2 = (3√2)2 + 62
BP2 = 18 + 36
BP2 = 54
BP = √54 = 3√6 cm

Maka,jarak titik B ke garis EG adalah 3√6 cm

Sekian pembahasan tentang  Contoh Soal dan Pembahasan Cara Menghitung Jarak Titik ke Garis Pada Kubus. Sampai jumpa lagi di dalam pembahasan contoh soal yang lain. Semoga kalian dapat memahami dengan baik apa yang sudah dijabarkan di atas.

Cara Menggambar Grafik Fungsi Aljabar

April 15, 2015 Add Comment
Cara Menggambar Grafik Fungsi Aljabar
Menggambar Grafik Fungsi Aljabar - Di dalam pelajaran matematika kalian pasti diajarkan mengenai cara- cara menggambarkan grafik fungsi aljabar baik yang berupa garis lurus maupun grafik fungsi aljabar dengan bentuk parabola. Grafik fungsi aljabar yang berbentuk garis lurus dinyatakan dengan persamaan fungsi linear y = f(x) = mx + nsedangkan grafik fungsi yang berbentuk parabola dinyatakan dalam persamaan fungsi kuadrat y = f(x) = ax2+ bx + c.

Cara Menggambar Grafik Fungsi Aljabar
Catatan:

Gambar dan grafik fungsi y = f(x) disebut kurva y = f(x). Untuk selanjutnya kita akan sering menggunakan istilah kurva.

Di dalam materi kali ini, Rumus Matematika Dasar akan mengajarkan cara-cara menggambarkan kurva yang dinyatakan dengan persamaan fungsi suku banyak. Fungsi sukubanyak adala suatu fungsi dengan peubah (variabel) x yang memupnyai pangkat lebih dari dua. Berikut adala beberapa contohnya: 

y = f(x) = x3+ 4x2  - 16x + 2
y = f(x) = x4 + 3x3 - 12x2 - 10x + 5
y = f(x) = 2x5- 10x4 + 2x3 + 3x2 + 15x + 6 ...... dan seterusnya.

Kurva-kurva yang dinyatakan dengan persaaan fungsi sukubanyak disebut sebagai kurva sukubanyak. 

Di dalam penerapannya, kemampuan menggambar kurva sukubanyak ini merupakan modal dasar untuk mempelajari kalkulus hitung integral, misalnya untuk menghitung luas daerah yang dibatasi oleh suatu kurva sukubanyak dengan sumbu X, dan sebagainya.

Beberapa pengertian tentang fungsi naik, fungsi turun, titik balik maksimum, titik balik minimum, titik belok horisontal, serta titik-titik potong dengan sumbu-sumbu koordinat akan sangat membantu dalam menyelesaikan gambar suatu kurva suku banyak. Sebagai pedoman, berikut ini adalah langkah-langkah yang dapat kalian ikuti tentunya untuk bisa menggambarkan suatu kurva sukubanyak.

Langkah-langkah untuk Menggambar Grafik Fungsi Aljabar


Langkah Pertama
Buatlah terlebih dahulu analisis pendahuluan yang meliputi:

  • Menentukan koordinat titik-titik potong kurva dengan sumbu-sumbu koordinat (jika koordinat itu mudah ditentukan).

             (i) titik potong dengan sumbu X, dengan mengambil syarat y = 0
            (ii) titik potong dengan sumbu Y, dengan mengambil syarat x = 0

  • Tentukan interval-interval ketika fungsi itu naik dan ketika fungsi itu turun.
  • Tentukan titik-titik stationer serta jenisnya : titik balik maksimum, titik balik minimum, atau titik belok horisontal.
  • Tentukan nilai-nilai fungsi pada ujung-ujung interval. Jika kurva itu akan digambarkan untuk semua bilangan real, maka perlu ditantukan nilai-nilai y untuk nilai x yang besar positif dan untuk nilai x yang besar negatif.
  • Tentukanlah beberapa titik tertentu untuk memperhalus sketsa kurva.


Langkah Kedua
Dari langkah pertama, titik-titik yang didapat kita sajikan dalam bidang cartesius.

Langkah Ketiga
Titik-titik yang telah disajikan dalam bidang Cartesius pada langkah kedua, kemudian kita hubungkan dengan mempertimbangkan naik atau turunnya fungsi. Dengan demikian, kita akan mendapatkan kurva y = f(x)

Agar kalian lebih mudah dan terampil dalam memahami cara menggambar kurva sukubanyak dengan persamaan y = f(x) maka sebaiknya perhatikan contoh di bawah ini:

Soal
Gambarlah sketsa kurva sukubanyak yang ditentukan dengan persamaan y = f(x) = 4x – x3

Cara Menjawabnya:

Langkah Pertama
(a) Koordinat titik-titik potong dengan sumbu-sumbu koordinat.
 (i) titik potong dengan sumbu X, dengan mengambil y = 0
      4x – x3 = 0
èx(4 – x2) = 0
èx (2 + x) (2 – x) = 0
èx1= -2 atau x2 = 0 atau x3 = 2
Titik-titik potong dengan sumbu X adalah (-2, 0) (0, 0), dan (2, 0)

                (ii) Titik potong dengan sumbu Y, dengan mengambil x = 0 diperoleh:
                      Y = 4(0) – (0)3 = 0
                Titik potong sumbu Y adalah (0, 0)

(b) Dari f(x) = 4x – x3maka f’(x) 4 – 3x2
     
                  f(x) naik jika f’(x) > 0                     ||             f(x) turun jika f’(x) < 0
                                4 – 3x2 > 0                      ||                           4 – 3x2 < 0
è3x2< 4                                            ||           à3x2 > 4
è-2/3 √3 < x < 2/3 √3                      ||           àx < -2/3 √3 atau x > 2/3 √3     

Perhatikan diagram tanda f’(x) pada gambar berikut ini:

Cara Menggambar Grafik Fungsi Aljabar

(c) Nilai stationer dan jenisnya
                
                Nilai stationer dicapai apabila f’(x) = 0
               
                4 – 3x2 > 0
àx1= -2/3 √3    atau   x2 = 2/3 √3

Nilai-nilai stationernya:

Untuk x1 = -2/3 √3    àf(-2/3 √3) = 4(-2/3 √3) – (-2/3 √3)3 = - 16/9 √3
        
f(-2/3 √3) = - 16/9 √3 merupakan nilai balik minimum, sebab f’(x)berubah tanda dari negatif menjadi positif ketika melewati x =-2/3 √3

Untuk x2= 2/3 √3    àf(2/3 √3) = 4(2/3 √3) – (2/3 √3)3 =  16/9 √3

f(-2/3 √3) = 16/9 √3 merupakan nilai balik maksimum, sebab f’(x)berubah tanda dari positifmenjadi negatif ketika melewati x = 2/3 √3

Jadi titik balik maksimumnya (2/3 √3), 16/9 √3) dan titik balik minimumnya (-2/3 √3), -16/9 √3)

(d) Untuk x besar maka y = f(x) = 4x – x3 dekat dengan -x3
      Jika x besar positif, maka y besar negatif
      Jika y besar negatif maka x besar positif

(e) Ambil beberapa titik tertentu untuk memperbaiki sketsa kurva.
               
                x = -3 à y = f(-3) = 4(-3) – (-3)3 = 15 à (-3, 15)
                x = -1 ày = f(-1) = 4(-1) – (-1)3 = -3 à(-1, -3)

                x = 1 ày = f(1) = 4(1) – (1)3 = 3 à (1, 3)
                x = 3 à y = f(3) = 4(3) – (3)3 = 15 à (3, 15)


Langkah Kedua
Beberapa titik yang diperoleh pada langkah pertama diletakkan pada bidang kartesius.

Langkah Ketiga
Titik-titik yang telah disajikan pada bidang kartesius itu kemudian dihubungkan untuk memperoleh sketsa kurva yang mulus seperti pada gambar dibawah ini:


Dalam hal ini perlu juga diperhatikan pula naik turunnya fungsi pada interval-interval yang telah ditentukan pada langkah 1 bagian (b)

Cara Menggambar Grafik Fungsi Aljabar
Demikianlah penjelasan tata Cara Menggambar Grafik Fungsi Aljabar lengkap dengan contoh soal dan penjelasan langkah-langkahnya. Semoga kalian bisa mengerti dan menerapkannya dengan baik.

Memahami Rumus Segitiga Pascal dalam Matematika

April 14, 2015 Add Comment
Memahami Rumus Segitiga Pascal dalam Matematika
Rumus Segitiga Pascal - Di dalam pelajaran matematika, segitiga pascal dapat diartika sebagai sebuah aturan geometrri yang berisi susunan koefisien binomial yang bentuknya menyerupai segitiga. Aturan ini ditemukan dan dikembangkan oleh sorang matematikawan asal perancis yang bernama Blaise Pascal. Perlu kalian ketahio bahwa ada beragam fakta unik yang tersimpan di dalam segitiga pascal ini. Segitiga pascal terdiri dari beberapa baris dimana dalam setiap barisnya terkandung bilangan-bilangan yang berupa koefisien daripada bentuk ekspansi pangkat bilangan cacah dari binomial. Jika belum paham dengan aturan segitiga pascal, berikut adalah salah satu contoh gambar dari segitiga pascal yang bisa kalian amati:

Memahami Rumus Segitiga Pascal dalam Matematika


Bisa dilihat dari gambar diatas bahwa puncak atau bagian teratas dari segitiga pascal (baris ke 0) diisi dengan angka 1. Kemudian di bawahnya (baris ke 1) diisi dengan angka 1 dan 1. Kemudian baris elanjutnya (baris ke-2) tetap di isi dengan angka 1 dan 1 dibagian sisinya kemudian pada bagian dalam diisi dengan hasil dari penjumlahan dua bilangan yang ada di atasnya (1+1=2). Sedangkan untuk baris ketiga diisi dengan angka 1 dan 1 pada bagian sisi kemudian bagian tengahnya diisi dengan angka hasil dari penjumlahan dua buah bilangan yang ada pada baris ke-2 (1+2 =3). Kemudian perhatikan pada baris keempat, angka 4 di dapatkan dari hasil penjumlahan dua bilangan yang ada di atasnya (1+3) begitu juga angka 6 diperoleh dari penjumlahan dua bilangan yang ada di atasnya (3 + 3). dan begitu seterusnya.

Penjelasan Rumus Segitiga Pascal dalam Matematika


Bilangan-bilangan yang ada pada setiap baris segitiga pascal menunjuhkan koefisien yang berupapenyederhanaan bentuk dari (a + b)n.

Apabila kita menjabarkan bentuk (a + b)n tersebut, maka akan terlihat bahwakoefisien yang diperoleh dari bentuk tersebut sama persis dengan tiap-tiap bilangan yang ada pada setiap baris dari segitiga pascal di atas. Coba perhatikan penyederhanaan berikut ini:

1. (a + b)1 = a + b   àkoefisiennya adalah 1 dan 1
2. (a + b)2 = a2 + 2ab + b2    àkoefisiennya adalah 1, 2, dan 1
3. (a + b)3 = (a + b)(a2 + 2ab + b2)
                 = a3+ 2a2b + ab2 + a2b + 2ab2 + b3
                 = a3+ 3a2b + 3ab2 + b3  àkoefisiennya adalah  1, 3, 3, dan 1


Jika kita perhatikan, pola bilangan tersebut sebenarnya adalah koefisien dari expansi pangkat binomial, coba kalian perhatikan contoh berikut ini:

(x + y)4 = x4+ 4x3y + 6x2y2 + 4xy3 + y4

artinya, pada i=4 diperoleh koefisien dari expansi pangkat binomial 4 yaitu 1, 4, 6, 4, dan 1 yang ternyata adalah bilangan-bilangan yang mengisi baris ke-4 pada sebuah segitiga Pascal. Sekarang coba perhatikan Teorema Binomial di bawah ini:

Memahami Rumus Segitiga Pascal dalam Matematika

Dari penguraian rumus diatas, dapat disimpulkan secara umum bahwasannya barisan bilangan yang ada pada baris i=k di dalam sebuah segitiga Pascal dapat dituliskan menjadi seperti berikut ini:

Memahami Rumus Segitiga Pascal dalam Matematika

Untuk lebih jelasnya mari kita ambil contoh untuk bilangan ke-2 dan ke-3 yang ada pada baris ke-5 dalam segitiga Pascal adalah:

Memahami Rumus Segitiga Pascal dalam Matematika


Dari pola di atas juga bisa diperoleh sebuah rumus baru yang dapat digunakan untuk menentukan bilangan a i, j yang merupakan bilangan yang ada pada baris ke-i dan kolom ke-j seperti berikut ini:

Memahami Rumus Segitiga Pascal dalam Matematika

Kita umpamakan saja misalkan kita ingin mencari bilangan yang ada di posisi baris ke-7 dan tepat pada kolom ke-6 maka perhitungan rumusnya adalah:



Dari penjabaran rumus tersebut, kita dapat menuliskan barisan bilangan yang ada pada diagonal ke-d menjadi sebagai berikut:

Sehingga pada akhirnya didapatkan rumus suku ke-n dari barisan bilangan yang ada pada diagonak ke-d seperti di bawah ini:

Memahami Rumus Segitiga Pascal dalam Matematika

untuk membuktikan rumus tersebut, mari kita coba mencari diagonal ke-3 pada sebuah segitiga Pascal yang memiliki pola n(n + 1)/2. Berikut adalah hasil ujinya:

Memahami Rumus Segitiga Pascal dalam Matematika


Kurang lebih begitulah cara Memahami Rumus Segitiga Pascal dalam Matematika yang bisa Rumus Matematika Dasar jelaskan kepada kalian semua. Semoga kalian bisa memahaminya dengan baik dan mengerti tentang pola bilangan yang berlaku dalam segitiga Pascal. Sampai jumpa lagi dalam materi matematika lainnya.

Contoh Soal dan Penyelesaian Model Matematika Dari Suatu Program Linear

Maret 26, 2015 Add Comment
Contoh Soal dan Penyelesaian Model Matematika Dari Suatu Program Linear
Model Matematika – Pada postingan sebelumnya kita sama-sama belajar tentang Pengertian Program Linear Dan Model Matematika SMA Kelas 11. Oleh karenanya, Rumus Matematika dasar akan melanjutkan materi tersebut kali ini dengan menghadirkan beberapa contoh soal mengenai model matematika. Model matematika merupakan sebuah rumusan matematika yang didapatkan dari sebuah proses penafsiran sebuah kejadian sehari-hari ke dalam rumus atau bahasa matematika. Agar kalian lebih memahami cara membuat model matematika dari suatu masalah program linear, simaklah contoh-contoh berikut:

Contoh Soal dan Penqelesaian Model Matematika Dari Suatu Program Linear


Contoh Soal dan Penyelesaian Model Matematika Dari Suatu Program Linear


Contoh Soal 1:
Sebuah pabrik memproduksi dua jenis barang K dan L dengan menggunakan dua buah mesin yaitu G1 dan G2. Untuk memproduksi barang K, mesin G1 harus beroperasi selama 3 menit dan mesin G2 selama 6 menit. Sedangkan untuk memproduksi barang L, mesin G1 harus beroperasi selama 9 menit dan mesin G2 beroperasi selama 6 menit. Mesin G1 dan G2 hanya bisa beroperasi tidak lebih dari 9 jam dalam sehari. Keuntungan bersih yang didapat untuk tiap barang K adalah Rp.350 dan untuk tiap barang L adalah Rp.700. 

Cobalah untuk membuat model matematika dari masalah program linear tersebut, apabila diharapkan keuntungan bersih yang sebesar-besarnya.

Penqelesaian:
Keterangan pada soal diatas dapat dituliskan dalam tabel seperti berikut ini:


Barang K
Barang L
Operasi tiap hari
Mesin G1
3 Menit
9 Menit
540 Menit
Mesin G2
6 Menit
6 Menit
540 Menit
Keuntungan
Rp. 350
Rp. 700


Kita misalkan Barang K diproduksi sebanyak p buah dan barang L diproduksi sebanyak q buah, maka:

Waktu operasi yang dibutuhkan untuk mesin G1 = 3p + 9q
Waktu operasi yang dibutuhkan untuk mesin G2 = 6p + 6q

Dikarenakan  mesin G1 dan G2 Tidak boleh beroperasi lebih dari 9 jam = 540 menit setiap harinya, maka harus dipenuhi pertidaksamaan berikut ini:

3p + 9q ≤ 540 -> p + 4q ≤ 180
6p + 6q ≤ 540 -> p + q ≤ 90

Perlu diingat bahwa p dan q mewakili banyaknya barang, maka p dan q tidak mungkin bernilai negatif dan nilainya pun harus merupakan bilangan cacah. Sehingga, p dan q harus memenuhi pertidaksamaan di bawah ini:

p ≥ 0, q ≥ 0, dan p dan q ε C

Keuntungan bersih yang di dapat dalam Rupiah = 350p + 700q, dan diharapkan keuntungan bersih tersebut adalah sebesar-besarnya. Jadi model matematika yang dapat dibentuk berdasarkan persoalan di atas adalah:

p ≥ 0, q ≥ 0, p + 4q ≤ 180, dan p + q ≤ 90; p dan q ε C

Dengan bentuk (350p + 700q) sebesar-besarnya.



Contoh Soal 2:
Sebuah pabrik farmasi menyediakan dua jenis campuran L dan M. bahan-bahan dasar yang terkandung dalam setiap Kilogram campuran L dan M dapat dilihat pada tabel berikut ini:



Bahan 1
Bahan 2
Campuran L
0,4 Kg
0,6 Kg
Campuran M
0,8 Kg
0,2 Kg

Dari campuran L dan M tersebut akan dibuat campuran N. Campuran N tersebut sekurang-kurangnya mengandung bahan 1 sebanyak 4 Kg dan bahan 2 sebanyak 3Kg. Harga setiap Kilogram campuran L adalah Rp. 30.000 dan setiap campuran M adalah Rp. 15.000.

Tentukanlah model matematika dari persamaan di atas jika biaya total untuk membuat campuran N diharapkan bisa semurah-murahnya.

Penyelesaian:
Misalkan campuran N dibuat dari x Kg campuran L dan y Kg campuran M,
Bahan 1 yang terkandung = 0,4x + 0,8y
Karena sekurang-kurangnya mengandung bahan 1 sebanyak 4 Kg, maka harus dipenuhi pertidaksamaan berikut ini:

0,4x + 0,8y ≥ 4 Kg -> x + 2y ≥ 10

Bahan 2 yang terkandung = 0,6x + 0,2y
Karena sekurang-kurangnya mengandung bahan 2 sebanyak 3 Kg, maka harus dipenuhi pertidaksamaan berikut ini:

0,6x + 0,2y ≥ 3 Kg -> 3x + y ≥ 15

Diketahui bahwa x dan y menyatakan jumlah berat campuran sehingga nilainya tidaklah mungkin negative dan harus dinyatakan dalam bentuk bilangan real. Maka dari itu, x dan y diharuskan memenuhi pertidak samaan di bawah ini:

x ≥ 0, y ≥ 0, x dan y ε R

Total biaya yang diperlukan untuk membuat campuran N = 30000x + 15000y dengan biaya total yang diharapkan bisa semurah-murahnya. Maka model matematikanya adalah:

x ≥ 0, y ≥ 0, x + 2y ≥ 10, dan 3x + y ≥ 15; x dan y ε R

Dengan bentuk (30000x + 15000y) sekecil-kecilnya.



Itulah 2 buah Contoh Soal dan Penyelesaian Model Matematika Dari Suatu Program Linear semoga bisa membantu kalian untuk lebih bisa memahami materi pelajaran matematika SMA mengenai model matematika dan juga bisa membuat kalian semakin paham mengenai tata cara dan langkah-langkah yang harus dilakukan guna menyelesaikan persoalan-persoalan serupa. Semangat terus untuk belajar matematika!!!

Pengertian Program Linear dan Model Matematika SMA Kelas 11

Maret 25, 2015 Add Comment
Pengertian Program Linear dan Model Matematika SMA Kelas 11
Pengertian Program Linear dan Model Matematika - Untuk postingan kali ini, materi yang akan dibahas oleh Rumus Matematika Dasar adalah mengenai Program Linear dan Model Matematika. Program linear atau biasa disenut juga sebagai optimasi linear merupakan suatu program yang bisa dipakai untuk memecahkan masalah mengenai optimasi. Di dalam masalah optimasi linear, batasan-batasan atau kendala-kendalanya bisa kita terjemahkan ke dalam bentuk sistem pertidaksamaan linear. Nilai-nilai peubah yang memenuhi suatu system pertidaksamaan linear berada pada suatu himpunan penyelesaian yang mempunyai beragam kemungkinan penyelesaian. Dari beragami kemungkinan penyelesaian tersebut terdapat sebuah penyelesaian yang memberikan hasil paling baik (penyelesaian optimum). Jadi dapat disimpulkan bahwa tujuan dari masalah optimasi linear adalah untuk mengoptimumkan (memaksimalkan atau meminimumkan) sebuah fungsi f. Fungsi f ini disebut dengan fungsi sasaran, fungsi tujuan, atau fungsi objektif.

Pengertian Program Linear dan Model Matematika

Masalah optimasi linear seperti yang telah dijelaskan di atas banyak dijumpai dalam bidang produksi barang, distribusi barang, dalam bidang ekonomi, dan bidang-bidang lainnya yang termasuk ke dalam kajian riset operasional.

Pengertian Model Matematika

Sudah dijelaskan di atas bahwa dalam memecahkan masalah program linear kita harus bisa menerjemahkan terlebih dahulu mengenai kendala-kendala yang terdapat di dalam masalah program linear ke dalam bentuk perumusan matematika. Proses tersebut adalah yang dinamakan dengan model matematika. Model matematika dapat didefinisikan sebagai suatu rumusan matematika yang diperoleh dari hasil penafsiran seseorang ketika menerjemahkan suatu masalah program linear ke dalam Bahasa matematika. Suatu model matematika dikatakan baik apabila di dalam model tersebut hanya memuat bagian-bagian yang diperlukan saja.

Untuk memahaminya dengan lebih mudah, perhatikan beberapa contoh pembuatan model matematika di bawah ini:

Contoh Soal Model Matematika dan Pembahasannya


Contoh 1 :
Mas Bejo membeli 6 buku tulis dan 8 pensil di suatu toko buku. Untuk itu Mas Bejo harus membayar Rp.6.900. Sedangkan Bang Jarwo hanya membeli 1 buah buku tulis dan 1 buah pensil dengan harga Rp.1.050. apabila harga dari sebuah buku rupiah dan sebuah pensil dinyatakan dengan x dan y, buatlah model matematika dari permasalahan tersebut!

Jawab:
Berdasarkan jumlah uang yang dibayar oleh Mas Bejo, didapat hubungan:

6x + 8y = 6.900

Berdasarkan jumlah uang yang dibayar oleh Bang Jarwo, didapat hubungan:

x+ y = 1.050

Maka model matematikanya adalah:

 6x + 8y = 6.900 dan
   x +   y = 1.050 dengan x dan y ε C


Contoh 2:
Seorang siswa memilih jurusan IPA, jika memenuhi syarat-syarat sebagai berikut:

a.) Jumlah nilai Matematika dan Fisika tidak boleh kurang dari 12
b.) Nilai masing-masing pada pelajaran tersebut tidak boleh kurang dari 5

Buatlah model matematika yang bisa digunakan sebagai patokan agar seorang siswa bisa memilih jurusan IPA!

Jawab:
Kita misalkan nilai matematika = x dan nilai fisika = y , maka dari syarat a.) diperoleh hubungan:

x + y ≥ 12

Dan dari syarat b.) diperoleh hubungan:

x ≥ 5 dan y ≥ 5

maka, model matematika yang dapat digunakan untuk patokan agar seorang siswa bisa memilih jurusan IPA adalah:

x ≥ 5 dan y ≥ 5, dan  x + y ≥ 12 ε C



Contoh 3:
Sebuah lahan parker hanya dapat menampung 200 mobil sedan. Apabila tempat tersebut digunakan untuk memarkir Bis, maka 1 Bis akan menempati luas yang sama dengan 5 buah mobil sedan. Apabila di lahan tersebut diparkir x Bis dan y Sedan, tentukanlah model matematikanya!

Jawab:
Misalkan untuk memarkir sebuah mobil sedan diperlukan luas rata-rata L m2, maka luas lahan parker yang tersedia adalah 200L m2(L > 0).

Untuk memarkir sebuah Bis diperlukan lahan seluas 5L m2 , Sehingga untuk memarkir x Bis dan y Sedan diperoleh hubungan:

(5L)x + (L)y ≤ 200
5x + y ≤ 200

Karena banyajnya mobil Bis dan Sedan tidak mungkin negatif, sehingga:

x ≥ 0 dan y ≥ 0

sehingga model matematika untuk persoalan di atas adalah:

x ≥ 0 , y ≥ 0 dan 5x + y ≤ 200, dengan x dan y

Demikianlah pembahasan materi Pengertian Program Linear dan Model Matematika serta beberapa contoh soal serta pembahasannya. Semoga kalian semua bisa memahami dan mengerti materi ini dengan baik. Untuk materi selanjutnya akan dibahas mengenai Contoh Soal dan Penyelesaian Model Matematika dari Suatu Program Linear.